### Colloquia

October 19, 20174.00 pm: Thermodynamics of Quantum Devices By Ronnie Kosloff, Hebrew University |

October 26, 20174.00 pm: Quantum optics with Rydberg atoms By Wenhui Li, Centre for Quantum Technologies, NUS |

November 2, 20174.00 pm: Quantum communication and fundamental quantum physics By Nobuyuki Imoto, Osaka University |

November 23, 20174.00 pm: Foundations of Lattice-based Cryptography By Divesh Aggarwal, Centre for Quantum Technologies, NUS |

→ expand colloquia list and access videos...

**Date:** 13 January 2017, 4pm

**Venue:** CQT Seminar Room, S15-03-15

**Speaker:** James P. Crutchfield, University of California at Davis

**Demon Dynamics: Deterministic Chaos, the Szilard Map, and the Intelligence of Thermodynamic Systems**

**Abstract:**

We introduce a deterministic chaotic system—the Szilard Map—that encapsulates the measurement, control, and erasure protocol by which Maxwellian Demons extract work from a heat reservoir. Implementing the Demon's control function in a dynamical embodiment, our construction symmetrizes Demon and thermodynamic system, allowing one to explore their functionality and recover the fundamental trade-off between the thermodynamic costs of dissipation due to measurement and due to erasure. The map's degree of chaos—captured by the Kolmogorov-Sinai entropy—is the rate of energy extraction from the heat bath. Moreover, an engine's statistical complexity quantifies the minimum necessary system memory for it to function. In this way, dynamical instability in the control protocol plays an essential and constructive role in intelligent thermodynamic systems.

**Date:** 2 February 2017, 4pm

**Venue:** CQT Seminar Room, S15-03-15

**Speaker:** Fernando Pastawski, Institute for Quantum Information and Matter (IQIM)

**Holographic quantum error-correcting codes**

**Abstract:**

In this talk, I will explore the recent connection between two profound ideas, quantum error correction and holography. The first, represents the realization that reliable quantum information processing could be achieved from imperfect physical components. The second, is a duality between two physical systems on different spatial dimensions which may be identified leading to the exact same predictions. Notably, only one of the two systems explicit includes gravitational features. Recently, quantum information has emerged as a natural tool to relate these two descriptions. As such, concepts familiar to quantum information scientists such as entanglement, compression and quantum error correction are playing important roles in understanding this duality. Conversely, the holographic duality is proposing a new lens through which to explore aspects of quantum error correction. In this talk, I will introduce some of the properties imposed by holography on corresponding quantum error-correcting codes, describe explicit tensor network codes which exhibit some of these properties and explore the implications of holographic predictions from a code-theoretic perspective.

**Date:** 23 March 2017, 4pm

**Venue:** CQT Seminar Room, S15-03-15

**Speaker:** Vlatko Vedral, CQT, NUS

**Quantum Physics: A Possible Theory of the World as a Whole**

**Abstract:**

Quantum mechanics is commonly said to be a theory of microscopic things: molecules, atoms, subatomic particles. Most physicists, though, think it applies to everything, no matter what the size. The reason its distinctive features tend to be hidden is not a simple matter of scale. Over the past few years experimentalists have seen quantum effects in a growing number of macroscopic systems. The quintessential quantum effect, entanglement, can even occur in large systems as well as warm ones - including living organisms - even though molecular jiggling might be expected to disrupt entanglement.

I will discuss how techniques from information theory, quantum and statistical physics, can all be combined to elucidate the physics of macroscopic objects. Can it be that part of the macroscopic world is quantum, while the rest is, in some sense, classical? This question is also of fundamental importance to the development of future quantum technologies, whose behavior takes place invariably in the macroscopic non-equilibrium quantum regime.

I will discuss the concept of quantum macroscopicity and argue that it should be quantified in terms of coherence based on a set of conditions that should be satisfied by any measure of macroscopic coherence. I will show that this enables a rigorous justification of a previously proposed measure of macroscopicity based on the quantum Fisher information. This might shed new light on the standard Schrödinger cat type interference experiment that is meant to demonstrate the existence of macroscopic superpositions and entanglement.

**Date:** 27 April 2017, 4pm

**Venue:** CQT Seminar Room, S15-03-15

**Speaker:** Valerio Scarani, CQT, NUS

**The applied side of Bell nonlocality**

**Abstract:**

Since its formulation in 1964, Bell's theorem has been classified under "foundations of physics". Ekert's 1991 attempt to relate it to an applied task, quantum cryptography, was quenched by an approach that relied on a different basis and was allegedly equivalent.
Ekert's intuition was finally vindicated with the discovery of "device-independent certification" of quantum devices. In this colloquium, I shall revisit the tortuous history of that discovery and mention some of the subsequent results.

Some references that review this topic:

V. Scarani, Acta Physica Slovaca 62, 347 (2012) [https://arxiv.org/abs/1303.3081]

N. Brunner et al., Rev. Mod. Phys. 86, 419 (2014) [https://arxiv.org/abs/1303.2849]

S. Pironio et al., New J. Phys. 18, 100202 (2016) [http://iopscience.iop.org/1367-2630/focus/Focus-on-Device-Independent-Quantum-Information]

**Date:** 18 May 2017, 4pm

**Venue:** CQT Seminar Room, S15-03-15

**Speaker:** Joe Fitzsimons, CQT, NUS & SUTD

**Secure quantum computation**

**Abstract:**

The realisation that conventional information theory and models of computation do not account for the full generality of states and operations described by quantum mechanics has led to the burgeoning field of quantum information processing. By harnessing quantum phenomena it is possible to produce stronger forms of cryptography and more efficient algorithms than could exist in a purely classical world. Computer security lies at the intersection of computation and cryptography, and has become an increasingly important topic in recent years. Since quantum information processing leads to advantages in cryptography and computation separately, it is natural to ask whether it may also enhance computer security. In this talk I will argue that the answer to this question is a resounding “yes”, and discuss recent developments in the field.

**Date:** 27 Jul 2017, 4pm

**Venue:** CQT Seminar Room, S15-03-15

**Speaker:** Dimitris Angelakis, CQT, NUS

**Quantum simulations with strongly interacting photons: Merging condensed matter with quantum optics for quantum technologies**

**Abstract:**

Classical computers require enormous computing power and memory to simulate even the most modest quantum systems. That makes it difficult to model, for example, why certain materials are insulators and others are conductors or even superconductors. R. Feynman had grasped this since the 1980s and suggested to use instead another more controllable and perhaps artificial quantum system as a "quantum computer" or specifically in this case a "quantum simulator".

Working examples of quantum simulators today include extremely cold atoms trapped with lasers and magnetic fields and ions in electromagnetic traps. Photons and polaritons in light-matter systems have also recently emerged as a promising avenue especially for simulating out of equilibrium many-body phenomena in a natural driven-dissipative setting.

I will briefly review in non-specialist terms the main results in this area including the early ideas on realizing Mott insulators, Fractional Hall states and Luttinger liquids with photons [1,2,3]. After that I will present in more detail a recent experiment in many-body localization physics using interacting photons in the latest superconducting quantum chip of Google [4]. A simple method to study the energy-levels-and their statistics - of many-body quantum systems as they go through the ergodic to many-body localized (MBL) transition, was proposed and implemented. The formation of a mobility edge of an energy band was observed and its shrinkage with disorder toward the center of the bands was measured, a direct observation of a canonical condensed matter concept perhaps for the first time.

Beyond the applications in understanding fundamental physics, the potential impact of this field in different areas of quantum and nano technology and material science will be touched upon.

References

1. D.G. Angelakis and C. Noh “Many-body physics and quantum simulations with light” Report of Progress in Physics, 80 016401 (2016)

2. "Quantum Simulations with Photons and Polaritons: Merging Quantum Optics with Condensed Matter Physics" edited by D.G. Angelakis, Quantum Science and Technology Series, Springer International Publishing, 2017, ISBN 978-3-319-52023-0, DOI 10.1007/978-3-319-52025-4

3. Keil, Noh, Rai, Stutzer, Nolte, Angelakis, A. Szameit "Optical simulation of charge conservation violation and Majorana dynamics", Optica 2, 454 (2015)

4. P. Roushan, C. Neill, J. Tangpanitanon,V.M. Bastidas,, …, D.G. Angelakis, J. Martinis. “Spectral signatures of many-body localization of interacting photons”, under review

**Date:** 31 August 2017, 4pm

**Venue:** CQT Seminar Room, S15-03-15

**Speaker:** Berge Englert, CQT, NUS

**What do the data tell us?**

**Abstract:**

We gather information about physical systems by observation. In the realm of quantum physics, the experiments give us probabilistic data with natural statistical fluctuations that cannot be reduced by better instrumentation. What do such data tell us about the quantum system under study? A systematic and reliable answer can be given with the methods of quantum state estimation and quantum parameter estimation. I will report on recent developments.

**Date:** 7 Sept 2017, 4pm

**Venue:** CQT Seminar Room, S15-03-15

**Speaker:** Katsunari Okamoto, Okamoto Laboratory, Japan

**Evolution and Perspective of Planar Waveguide Devices**

**Abstract:**

The talk will review progress and future prospects of planar waveguide devices. Silica-based PLCs (planar lightwave circuits) and InP PICs (photonic integrated circuits) are widely used in the current WDM and FTTH systems. The success of silica PLCs and InP PICs strongly depends on their well controlled core geometries and refractive-index uniformities. On the other hand silicon photonics is widely regarded as a promising technology to meet the requirements of rapid bandwidth growth and energy-efficient communications while reducing cost per bit. One of the most prominent advantages of photonics interconnection over metallic interconnects is higher bandwidth and signal routing functionality using WDM technology. Expectations on Si photonics and technical challenges for silicon photonics will be described.

**Date:** 19 October 2017, 4pm

**Venue:** CQT Seminar Room, S15-03-15

**Speaker:** Ronnie Kosloff, Hebrew University

**Thermodynamics of Quantum Devices**

**Abstract:**

Quantum thermodynamics addresses the emergence of thermodynamical laws from quantum mechanics. The viewpoint advocated is based on the intimate connection of quantum thermodynamics with the theory of open quantum systems. Quantum mechanics inserts dynamics into thermodynamics giving a sound foundation to finite-time-thermodynamics. The emergence of the 0-law I-law II-law and III-law of thermodynamics from quantum considerations will be presented through examples. I will show that the 3-level laser is equivalent to Carnot engine. I will reverse the engine and obtain a quantum refrigerator. Different models of quantum refrigerators and their optimization will be discussed. A heat-driven refrigerator (absorption refrigerator) is compared to a power-driven refrigerator related to laser cooling. This will lead to a dynamical version of the III-law of thermodynamics limiting the rate of cooling when the absolute zero is approached. The thermodynamically equivalence of quantum engines in the quantum limit of small action will be discussed. I will address the question why we find heat exchangers and flywheels in quantum engines. I will present a molecular model of a heat rectifier and a heat pump in a non-Markovian and strong coupling regime.

**Date:** 26 October 2017, 4pm

**Venue:** CQT Seminar Room, S15-03-15

**Speaker:** Wenhui Li, Centre for Quantum Technologies, NUS

**Quantum optics with Rydberg atoms**

**Abstract:**

There have been growing research activities involving Rydberg atoms in different directions of quantum optics, both fundamental and applied. In this talk, I first briefly review a few systems and examples, which exploit the exotic properties of Rydberg atoms for new phenomena and applications. I then discuss some of our experimental efforts, including electromagnetically induced transparency and microwave-optical conversion using Rydberg atoms.

**Date:** 02 November 2017, 4pm

**Venue:** CQT Seminar Room, S15-03-15

**Speaker:** Nobuyuki Imoto, Osaka University

**Quantum communication and fundamental quantum physics**

**Abstract:**

If a high-quality entanglement is shared between two distant parties, there are a lot of innovative things we can do such as device-independent QKD, which is in fact initiated by Ekert [1]. For this, faithful quantum communication via a noisy and lossy channel is an important element, which is the main research item of my research group [2]. As we proceed this type of research, we encounter some fundamental research themes. For example, we developed a frequency converter of a single photon that maintains coherence and entanglement [3]. Our frequency converter acts as a beamsplitter in frequency domain, whose conversion efficiency is tunable. Using this frequency-domain beamsplitter, we performed Hong-Ou-Mandel interference [4], where two different-color input photons are converted into two same-color output photons whose color stochastically becomes either of the original two colors. We also performed Mach-Zehnder interference [5], which, in frequency domain, is more difficult than the HOM interference. The second example of fundamental research themes, other than the frequency converter, is cheat-sensitive type communication [6], where we can guess the result of the measurement performed by our partner regardless whether he/she chose from the linear and circular polarization measurements, which at first glance appears to be in conflict with the uncertainty principle. The key is that we not only prepare the initial state of the photon before the partner’s measurement but also measure its final state after the partner’s measurement. This concept is generalized to so-called weak value [7], and we are pursuing the meaning and usage of this new concept [8].

[1] A. K. Ekert, PRL67, 661 (1991).

[2] T. Yamamoto et al., Nature 421, 343-346 (2003); Nat. Photon. 2, 488 - 491 (2008).

[3] R. Ikuta et al., Nat. Commun. 2, 1544 (2011).

[4] T. Kobayashi et al., Nat. Photon. 10, 441–444 (2016).

[5] T. Kobayashi et al., Optics Express, 25, 012052_1_9 (2017).

[6] K. Shimizu et al., PRA84, 022308 (2011).

[7] Y. Aharonov et al., PRL, 60, 1351 (1988).

[8] K. Yokota et al., New J. Phys. 18, 123002 (2016).

**Date:** 23 November 2017, 4pm

**Venue:** CQT Seminar Room, S15-03-15

**Speaker:** Divesh Aggarwal, Centre for Quantum Technologies, NUS

**Foundations of Lattice-based Cryptography**

**Abstract:**

Lattice-based cryptosystems are perhaps the most promising candidates for post-quantum cryptography as they have strong security proofs based on worst-case hardness of computational lattice problems and are efficient to implement due to their parallelizable structure. Attempts to solve lattice problems by quantum algorithms have been made since Shor’s discovery of the quantum factoring algorithm in the mid-1990s, but have so far met with little success if any at all. The main difficulty is that the periodicity finding technique, which is used in Shor’s factoring algorithm and related quantum algorithms, does not seem to be applicable to lattice problems.

In this talk, I will survey some of the main developments in lattice cryptography over the last decade or so. The main focus will be on the Learning With Errors (LWE) and the Short Integer Solution (SIS) problems, their ring-based variants, their provable hardness under the intractability assumptions of lattice problems and their cryptographic applications.

### Forthcoming Talks

CQT Talk by Grégory Langue, Liège Space Centre,University of Liège, Belgium

Title: Prototyping of a high-speed, time-of-flight, distance measuring device for formation flying satellites.

Date/Time: 24 Jul, 04:00 PM

Venue: CQT Level 3 Seminar Room, S15-03-15

Abstract: There are a multitude of ways of measuring distance, however not all are suitable for space. This study is focused on distance measurement using time of flight (TOF) and more specifically on the development of a space-compatible receiver device that operates at distances, around 1km, where the recovered energy is very low.

A MPPC (Multi-Pixel Photon Counter) was investigated and developed into a prototype receiver.

Crosstalk and afterpulse phenomena related to the MPPC were observed, and the limits of the system were established. The results highlighted the importance of a neat design and the limitations related to internal noise (produced by the circuit and the sensor) and external noise (stray light).

The conclusion of this work is the realisation of a supervisory circuit for the functional MPPC. Although the card correctly conditions the pulses of current emitted by the sensor, improvements can be made.

One of the developments envisaged is the acquisition of the pulses by FPGA and the processing (as well as the communication) would be left to the microcontroller. The use of FPGA would also implement

digital filters and / or algorithms to bring out, more easily, the useful impulses embedded in the noise.

PhD Oral Defense by Tang Zhongkan Kamiyuki Xavier

Title: Towards a space-based quantum key distribution network: developing a miniaturised
entangled photon source for nanosatellites

Date/Time: 27 Jul, 03:00 PM

Venue: CQT Level 3 Conference Room, S15-03-17

Abstract: Quantum key distribution (QKD) based on entangled photon pairs offers provable security underpinned by quantum physics. Current QKD networks have distance limits due to loses and satellite technology can be used to extend this network. We propose an iterative and cost effective approach to this challenge using an emerging nanosatellite standard called CubeSat. The first step towards this direction is to demonstrate a miniaturised polarization entangled photon pair source that is compatible with the resource-limited CubeSat. This thesis discusses the engineering and instrumentation of such a source. The initial prototype of the source was tested on a weather balloon 37km in altitude. Subsequently, we have tested the revised prototype in two space missions (GomX-2 and Galassia-NUS). These results establish space heritage for the components used and provide insights to refine the design leading to a space qualified QKD source.

Quantum Machine Journal Club Talk by Micro Milletari, Bambu

Title: Efficient information propagation in Feed Forward Neural Network

Date/Time: 27 Jul, 03:00 PM

Venue: CQT Level 3 Seminar Room, S15-03-15

Abstract: Machine Learning is redefining the very way we interact with machines; in particular, algorithm based on Deep Neural Networks (DNN) deliver record breaking performances on tasks such as image classification and speech recognition. Recently, DNN have been also used to let machines create new pieces of art, such as painting, music and writing, tasks considered to be of properly human nature. This Renaissance of DNN based AI is mostly due to increased computer power and GPU based machines that made the simple, but numerically heavy calculations underlying many DNN architectures feasible.

Nevertheless, still little is understood from a fundamental, mathematical point of view as most ML model are guided by heuristics and unknown, uncontrolled approximations that lead to an unsystematic growth of the model complexity. In particular, the ML community tend to distinguish between two seemingly different approaches: Feed Forward (FF) and Energy based. The former is the most used but less understood one, while the latter can be related to popular models of statistical mechanics but found little practical applications.

In this talk I will discuss a statistical mechanics model we recently proposed to link together these two seemingly different approaches via a simple variational principle that recasts FF networks in Hamiltonian form. We show that in this way it is easy to obtain several known results of FF networks, but also show some of the problematics related to the use of heuristic non-linear activations. In particular we show how the well known problem of vanishing gradients arises from a dimensional mismatch induced by the use of such activations. Our framework simply provide the solution to this problem by providing the correct activation, that we term ESP (Expected signal propagation). Finally, the standard ReLu activation arises as a limiting case of ESP, providing in this way the first formal derivation of this popular activation.

We highlight the probabilistic nature of ESP and study the eigenvalue spectrum of the associated Hessian on classification tasks. We find that ESP allows for faster training and more consistent performances over a wide range of network architectures. This means that ESP trained FF networks are less prone to fine tuning of their topology.

Several open problems in classical and quantum machine learning can be tackled by means of the tools introduced in the talk, I will try to discuss these open problems and possibly convince you to join me working on them!

CQT Talk by Andrzej Dragan, Warsaw University

Title: Ideal clocks - a convenient fiction

Date/Time: 21 Aug, 04:00 PM

Venue: CQT Level 3 Seminar Room, S15-03-15

Abstract: No device built according to the rules of quantum field theory can measure proper time along its path. Highly accelerated quantum clocks experience the Unruh effect, which inevitably influences their time rate. This contradicts the concept of an ideal clock, whose rate should only depend on the instantaneous velocity and not acceleration.

### Workshops & Conferences

7-8 December 2017 :
CQT10 Conference |